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Abstract—The planar waveguide holding planar obstacles is a
prototype structure—its fields correspond to some sets of lowest
modes in circular and ceaxial line waveguides that use coaxial iris
loading and in inductive iris loaded rectangular guides. An analysis
of a periodically thin-iris loaded planar waveguide is offered, the
procedure for which can also be applied to the other waveguides
mentioned. A particular example for small iris separation is con-
sidered. Among the results of this study are adjustments to some
formulas of Brillouin so as to allow consideration of large phase
shifts per cell of periodic guide. The procedure, which can be recom-~
mended as a formula deriving technique, can find use with such other
planar obstacles as the thick periodic iris, the interdigitally placed
irises, or the single iris in a multimode guide. Some consideration
is given to interdigital loading.

I. INTRODUCTION

HE SYMMETRIES of waveguide obstacles are
Tuseful when they can divide the set of normal
modes into sufficiently small, distinct subsets.
They are further useful when several types of guide fall
together as a class because of similar symmetry proper-
ties. The following guides, because of the planar ob-
stacles they hold, form such a class; namely, such irises
in the planar waveguide, coaxial irises in the circular
waveguide or in the coaxial line waveguide, and induc-
tive window irises in rectangular waveguides. In all of
these cases, there is a distinctive subset of normal
modes which includes some modes of the lowest order.
By treating only obstacles in the planar waveguide,
one obtains a prototype of analysis for the remaining
cases mentioned. Hence the planar guide, with peri-
odically arrayed thin irises (as shown in Fig. 1), will be
considered here. Two points are worth noting before-
hand as important to the analysis. On the one hand, an
appropriate series representation of the field operator
will be employed. On the other hand, use will be made
of a simplified interpretation of elements of the series of
operators. It will be plain how the procedure can be ex-
tended to cover the cases of other waveguides men-
tioned.
Among the results will be some relations for adjusting
the formulas of earlier studies'-?? of this periodic guide
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Fig. 1. Properties of the periodic loading and of the planar wave-

guide when E waves and the TEM wave are present. For
waves, let YVo(k)=27T(k).

configuration for the sake of extending the range of pos-
sible phase shift per section. It is thought, because ol the
attention given to accuracy, that the results will be use-
ful for representation of such multimode guides. The
emphasis of what follows is upon method (upon its
formal display, at least), and thisisreflected in the pres-
ence of a somewhat large section of developmental dis-
cussion.

In order to maintain simplicity, only the combined E
and TEM waves are treated, although some similarly ob-
tained results for H waves will be presented. An appli-
cation of results to interdigital lines will also be shown.

II. THEORETICAL CHARACTERIZATION
OF THE PROBLEM

Transverse fields in each cell of the periodic guide can
be given by the collection of their component normal
modes. Thus, let

[E.(k) = E.o(k) cosh T'(k)z

+ Zo(k)H.o(k) X 2 sinh T'(k)z] (1)
and
[H,(k) = H,o(k) cosh T'(k)z

+ 2 X Yo(R)Ero(k) sinh I'(k)z]  (2)
show a mode of the periodic guide as a vector col-
umn indexed by the wave numbers k. The nota-
tions E,=[E.(k)], H.=[H.(k)], E.o=[E.(k)], and
H.o=[H.(k)]| are a helpful convenience for handling
(1) and (2). If K= [k] is a diagonal matrix of the wave

numbers %, then one can make further convenience of
the notations Zo(K)=[Zo(k)], Vo(XK)=|[Vo(k)], or
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I'(K) = [T'(k) |; or other scalar functions of K. Thus, (1)
has the alternate representation E,=cosh I'(K)zE,,
+ Zo(K) sinh I'(K)zH,o X 2. Finally, where only passing
interest will be the case, the collection of wave numbers
k might form a continuously (as well as discretely)
infinite set, depending on the guide dimensions.

If (1) and (2) are to be a mode of the periodic guide,
they must fit the boundary conditions of continuity on
the iris holes, zero transverse electric field on iris metal,
and the amplitude variation e¢* {from cell to cell. The
corresponding constraining statements upon (1) and (2)
can be put as

g >< H10 = Y’L(K)ETO
Yo(K)(coth T(K)d — et csch T(K)d)E., (3)

Il

and as
Jso = 2V (K)E,,
= 2V o(K)(cothT(K)d — fcsch T(K)d)E,o. (4)

In (3), Y.(K) is a matrix of image admittances for the
normal modes, looking along z>0, from the point
2=0%. In (4), J. is the field of total current densitv on
the iris plane at 2=0, and 2V;(K) is a matrix of shunt
loadings for the normal modes at the iris planes. For
convenience,

f = cosh kd, (4a)

where % is the propagation constant per cell along z>0.

E., is normal to the iris edge. It is well known that
such fields follow an inverse square root of distance law,
so that E,¢ is not made of a square integrable function
on the iris hole. So as to enjoy a path of least action,
when a norm for E, is needed, the definition

1=f0b|E(x)|dx

will be used. This assumes E,p= £E(x).
Introduce now the projection operator P, which is
such that

[

PF, = F.

when F, is a field having the value zero on iris metal,
and is such that

PF. =0

when the value of F; is zero over the iris hole. Thus,
more generally, if F, is an arbitrary field on the uniform
guide cross section, PF, can be said to be F, projected
on the iris hole. P has the property P!=P, where
t=1,2,3, ... Although P can be defined well enough
to work with, it has no inverse, for it is usually impos-
sible to reconstruct the iris metal component of F,,
given PF,. That component is in the null space of P.
P has the important properties of being real and sym-
metrical. Thus

Re P = P = P* = Re P*,
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The projector complementary to P, which projects on
iris metal, can be found from P as

Q=1-—P.

In the problem at hand, one makes use of P and Q in
the relations PE,,=E,; and QJ.o= Jso.

That a field satisfy both (3) and (4) is necessary for
solution of the periodic guide problem. These statemenst
derive from the boundary conditions. More generally,
an arbitrary E., inserted into (3) will always vield E.
and H, that fit Floquet’s theorem, although not usually
fitting boundary conditions. On the other hand, if E,, is
such that

0 = PY(K)PE,,, (5)

boundary conditions are automatically satisfied; and
Floquet's theorem fits by use of (3). Thus, assuming
(3), (5) is sufficient, as well as necessary, for E;¢ to solve
the periodic iris-loaded waveguide problem.

A useful alternative to (5) can be seen in the state-
ment

0 = QZy(K)QJso, (6)

where Z,(K) = V;(K)™ . Since VoK)= VYT(K)", when
the £ plus TEM combined waves are considered, one
sees that (5) makes use of a bounded operator, whereas
Z(K) in (6) is unbounded. Were H waves being con-
sidered, it would be (6) that held the bounded operator,
and (5) the unbounded Y(K).

I1I. FURTHER DEFINITIONS AND FORMULATIONS

Because there will be much formal manipulation of
operators and vectors in the subsequent discussion, it is
worthwhile to show the means by which representations
are made with some care, the better to trace their prop-
erties. Therefore, consider the following definitions,
some of which have already been used.

First assume {¢: non-negative integers}. Some useful
subsets of {t} are {t: odd positive integers} and
{t,: even non-negative integers}.

From {¢} construct {k=tr/a}, which is the set of
wave numbers for the given unobstructed planar wave-
guide. Also define the construction of {I=¢r/b}, the
wave numbers of a smaller uniform planar waveguide.
Note the additional sets {m=tx/d}, {mo=tm/d}, and
{ma=te7r/d}, their interpretation as waveguide wave
numbers being in this case superfluous since they will
be used as summation indices.

{k} has already been used to provide indices of the
coefficients used for the Fourier series representation of
a field. Thus, for example, E,=[E,(k)] must suggest
identity between the field given by its Fourier coeffi-
cients and given by the set of its functional values on
the larger waveguide cross section. A similar use can be
made of {1} for fields on the smaller waveguide cross
section. In particular, if PE,=E,, one has the relation
E.=[E(R)]=[ED]



1966

Let a=al be called a scalar operator, where I is the
identity operator and « is a number. Thus, in a conven-
tional way, an expression is operator or scalar depend-
ing on the terms other than « that may occur.

The diagonal operator K has been introduced previ-
ously as a construction from {k } The operator L from
{1} can be defined similarly. K and L are not invertible
since zero is a diagonal element of each of them. How-
ever, if «#0, K+« and L+« are invertible.

K? can be identified with the operation —d?%/0x2 on
functions in the interval 0<x<a, having zero deriva-
tives at x=0 and x=a. Recall that £ wave and TEM
wave normal modes fit these boundary conditions. K2 is
not invertible, but K2—k2= —9?%/dx>*—k? is. Thus,
working either with function or with sequence represen-
tations, a one dimensional wave equation can be solved
in the given interval with the given boundary condi-
tions. L? is a second derivative operator like K?, but in
the interval 0<x <5b.

It is possible, but will not be necessary here, to show
a matrix form for P. A suitable representation of P will
be derived as follows. Let {e(k)} and {e(l)} be ortho-
normalized normal mode bases corresponding to guides
with cross sections on 0<x<a and 0<x<b, respec-
tively. Let PE,=E, = [E.(k)| = [E.(])], and define T as
that operator required to accomplish the transformation

[E.(&)] = TIE.()]. Q)

That is, T gives a basis change from {e(l)} to {e(k) }
Thus, except for the null-space of P, which is to be over-
looked anyway, T can represent P. Like P, T is a real
operator. Unlike P, T is not a symmetrical operator.
For, on the one hand,

T*T = 1 (8)

50 that T* retransforms from the larger to the smaller
basis. On the other hand,

TT* = 1,

unless the domain of T* consists only of functions on
the iris hole; e.g., as in

(TT*)T = T(T*T)
=T.

This property of T is due to the fact that, while T does
not have a null-space, 7* does have a null-space.

There is a net advantage if T is used to represent P
in (3). For then the symmetrical operator in

0 =T*V,(K)TE, )

has or has not a null-space depending only on the factor
V(K). Naturally, in (9), it is not necessary to insist
that TE., (opposed to E,o) solves the problem unless
the periodic guide is actually being fed by a guide with
cross-sectional width a.

If, like T, 8 is introduced as a basis change on the
iris metal, then the alternate equation (6) can be put

ROSENBERG AND STOCK: THIN-IRIS LOADED PERIODIC WAVEGUIDES

147

as the more definite statement,

0 = S*Z;(K)SJ.0 (10)

One might note that S+ T is an orthogonal transfor-
mation, from the large guide cross section to the large
guide cross section. Individually, S and T are not or-
thogonal. However, each might be characterized as
holding some of the columns of an orthogonal matrix.

The properties of T help to obtain an evaluation of
the operator product T*(K?+a?)~'T. It has been noted
that (K?+a?)~! is an inverse wave operator in the
larger guide, fitting zero derivative boundary condi-
tions at the guide walls. T provides the functions to be
operated upon (from the basis {e(l) }), while T* projects
and transforms the result to something tractable,

In this process, what is required first is a solution to

<— zy a2>F = e(),

=07

0<xLb

bLx<a,

(11)

where e(/) = £+/€(//b) cos Ix, and e(l) =1 when /=0, or
¢(/)=2 when [>0. With the given boundary condi-
tions, one has

()
F = 3(* 4+ aﬁ)—11/f<[)—) cos Ix

€(l) coslb-sinhaa — b)

— ZA) — - cosh ax  (12)
b (I®+ & sinh aa
for 0<x<b, and
€(l) cos Ib-sinh ab ‘
F = 4/— g coshafe — x) (12a)
b (4 a¥sinhac

when 5 <x<a. Plainly, T*F is given by (12).

The collection of all such T*F gives a diagonal matrix
for the first terms of (12), and makes a dyad* from the
second terms of (12). Furthermore, since

l
) cosh ax /‘/ﬁ cos Ib
i -—

a sinh ozb
lz + «?

shows a Fourier sequence representation, then one has
the choice

T* (KZ ._I_ a?)—l

(13)

sinh a(a — b
= (L + o)~ — asinh ab sinh a(e = b)
sinh aa
! !
Vi)— cos b /‘/i)— cos lb
(14)
l2 + a? 12 —|~

in matrix form, or

4 See Appendix.



148

T*(K? + o)~ 'T

= (L2 4 a?)!
sinh a(e — b)

a sinh ab-sinh aa

% cosh ax > < & cosh ax (14a)

in functional form, or a mixture if one requires it.

By using (13), changing b to d and x to z, and then
evaluating at =0 and z=d, one can write from (4):
1 — fcosmd

S 15
I'(K)? + m? (1)

Y
Vi(K) = " 2 <(m)

which holds for d >0. Making use of (14a), one can put
T*YV,(K)T = Z > e(m)(1 — f cos md) S
d @) + m?
sinh T'(m)(a — b)
- T'(m) sinh I'(m)b-sinh I'(m)a

& cosh T'(m)x > < & cosh I‘(m)x} , (16)

also holding for d > 0. Thus, there is at least one general
formula to give the product indicated by (9). There are
others, but (16) is suitable for small d, and this will suit
the sample problems to be shown.

If K?in (15) and L2 in (16) are extended so as to
mean second differentiations in the half lines below
x=a and x =20, respectively, and if x yields to the sub-
stitution y=56—x, then (15) can be used to show
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TV (K)T = r > e(m)(1 — f cos md) {A_“

a T(L)? + m?
e T =0 ginh T'(m)(a — b)

I'(m)

j}g—l‘(m)ﬂ > < y‘e—l“(rn)y}

for waves on a single-plane, iris-loaded guide. One must
note, however, that a subset {0, - - -, m1} of {m} cor-
responds to outward traveling waves along y. Conse-
quently, there is a second operator associated with
(16a), having the same form, except in the replacement
of outward traveling waves with inward traveling
waves. Results would be the same in both cases. How-
ever, were it ¢ —b which became large instead of b, one
should have pairs of solution fields (see Table I, Case
IIT) combining to make such a guide appear as a receiv-
ing antenna, a transmitting antenna, or a power trans-
mission line.

The operator (15) relates electric field to current
density. The operator

K*Y(K) 7
relates voltage field to charge density. One could let
ky—0 in (17) and then find operators equivalent to (16)
and (16a), but speaking onlyv for static fields. Two par-
ticular effects can be mentioned: one, the m =0 term
becomes nullified; two, the TEM waves in (16) are
removed. Some further variations of the problem are
shown in Table I.

TABLE 1
REsuLTS FOR THE E AND TEM CoMBINED WAVES

Symmetric solutions: any possible
number of images about x=0 or
x=q.

Ero=2% cos v/ g%tk x

Jeo=2 cos ko(x—a)
ko tan ko(a—b)

T3 /et tan Vg tko? b=0

Auntisymmetric solutions: only
possible image pairs about x =0.

Ery=% sin 4/g%+ko? 2
Ju=2% cos ko(x—a)
O0=Fky tan ko(a—0b)

+V/g2 ko cot v/g ket b

Antisymmetric solutions: only
possible image pairs about x =a.

E, =% cos v/g2+ke? »
J:o=2 sin ky(x—a)
ko cot ko(a—-b)

+v/e*Fko® tan v/g*Fko? b=0

CasE I
& —
a‘:*'_b]/ T T [ 1 Eg=3%¢ 1012y Eyp=geletx1y
‘ Jeoo=2 cos Bo[y— (a—b)] _ Jo=2% sin ko[y— (a—0)]
y kotan ko(a—b) —/|g|2—ke?=0 kocot kola—b)+4/|g|2—ke2=0
Case 11
: 1
t o -
| l l i ? Ery=% cos v/ g*+ke* x E-y=% sin /g2+k2 x
. -+ > Joo = deikw Juo=qethy
T - z tikot/ g2k tan /g2 ko? b=0|F jko+~/ g2+ ko? cot g2+ ko2 b=0
|
z Caske 111
1 1
[
T s [mmie
Jao=£3ijk°u
y g=h=0
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IV. SoLuTION PROCEDURE

When d is small, (16) can become simplified;i.e.,when
kod is small, say kod <0.1w. The total phase shift per cell
is not necessarily so limited, for it will be seen that the
dimensions ¢ and & can be chosen from a large set of pos-
sible values. It was mentioned that results will be shown
which would extend the range of usefulness of some
known formulas and curves. Indeed, when multimode
guides are considered, one might think any contribution
to accuracy of results is helpful. Some tests on the fol-
lowing sample problem will show that, as [ha’I varies
from 0 to =, error in 'hd’ rises to five percent off the
values required for solving (9).

Some inaccuracies in the next few lines will need to be
refined when the reasons for them are shown. Put (15)
in the form

2 1
m Vi(K) = Yo(K) [:tanh Y I'(K)d

T=1 o trma] s
chon;()] (18)

so that as d—0

2

2%

1
Vi(K) ~1 — g~

— ; (19)
Yy —1 Ir'(K)?
wherein the replacements
tanh ! T'K)d =1 (20)
anh — =
I'(K)d 2
and
(K)d 4
— t — = R
®)d r(K)'* 3
have been made, and where
4/ -1 1 /f = I\
)
\f + 1 3\f+ 1
4 hid 2 hd !
= —sinh? [1 + —smhg———l . (22)
d? 2 3 2

The notation %; is meant to suggest that /4, can
stand correction. Note that in (22) the constraint
—12<g%d2<6 for all real or imaginary %; and note also
the poles of g? located at

2
+ hy = d-! sinh-! 1/5— + i (2 + 1),

where ¢ can be any positive or negative integer. One can
see that the waveguide problem would be characterized
more accurately by (19) the further out the poles are
placed, implying that accuracy is favored when 1h1dl
is small. If | 7yd| <0.307, then
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2 h?
g

= e (1 — hd
o g e )

{22a)
can be used to replace (22).

Now, taking (19) to be an estimate of (15), let (16) be
estimated by

9

g%

Y{f—1) ®)

~1— g2
* Ty
2 sin kola — b
— g—-—o—(—) £ cos kox > < Zcos kex  (23)
kosin kob-sin kea

when d—0. Upon operating on the left sides of the oper-
ators in (23) with I'(L)2(T'(L)2—g?* !, one obtains

1 g% sin ko(a — b)
VEe + g% sin Vko? 4 g2 b-sin koa
-#cos Vo + gla > < @ cos kox.

(24)

Since E,y is the null-space of (24), one has immediately
that

E.o= & cos Ve + g2x.  (25)

E,, is finite at the iris edge in (25), but this can still be
a fair representation of electric field in the iris hole since
the infinite rise of E,, should start nearer the edge and
pass a smaller fraction of power, as d—0. If the set of
irises is taken as an artificial dielectric insert, then (25)
shows a field whose magnitude drops off in an expected
manner, away from the interface of free space with a
dielectric insert, when k24 g%<0.

One can calculate as a check on E,q, corresponding to
each term in (16), the value of the quadratic form

(ETO, T*(F(K)2 + mg)wlTETO)
1

m? — ket

B Vgl — ko? .
(m* — k) (Vm? — ke + Vgt — ko)

(26)

and it is now implicit that k¢*+g2 <0. If a sum?® is made
over {m,>0}, one finds that

2 2

me>0

(ET(), T*(P(K)Z + mz)‘lTE,g
(Eoy, T*T(K)—"TE.q)

P kotd

=2 <g—d>2|:0.629 - 0.185~\-/*]—g——

271' T

1
+

— 4 27
e - |
27

5 L. B. W. Jolley, Summation of Series, 2nd rev. ed. New Vork:
Dover, 1961, pp. 62-65, 240-242.
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Thus, when k0d<‘gdl =0.27, (27) shows a three-per-
cent error in the estimate (23) of (16) due to operators
with index m,>0. At the same time, if (26) is summed?®
over {m,}, one should have

83 (Ero, T*(T (K)* + m?) "' TEx0)
e (Evo, T*I'(K)~*TE.o)

gad\? — 4
= (—) [0.221 — 0.043+/ | g |2 — ko? —
m

T
1
+ 1
d

1+VW:J'

(28)

By contrast with (27), (28) shows a 14-percent error in
the estimate of (16) by (23) due to terms indexed s,
for the condition |gd[ =0.27. If the region of iris metal
were smaller, then the dyadsin (16) and (23) would have
smaller amplitudes, yielding +/|g|2—k#® more nearly
zero; so that (26) should have more nearly the form
(m?—k¢%)!, yielding in turn more nearly zero errors in
the tests (27) and (28). Therefore, it is chiefly the size
of iris metal that may cause error in using (23) to repre-
sent the waveguide problem when d is small.

Nevertheless, it appears the estimates (19), (23), and
(25) are really quite useful. For what is needed, in view
of (27) and (28), is only to change the replacements
(20) to

1
— tanh — I'(K)d =
T(K)d p TEIE =&

8 -
= —{0.221 — 0.043v/| g|* — ke
ﬂ_2

d 1
2 ]
” SRR FCT)
L Tl |
m
and (21) to
th ! T(K)d = + 30
"y 2 TRy (30)
where
2 —d
g2 = —2|:0.629 — 0.185v/| g |2 — ko? —
T 27
1
+
———d {; (30a)
VTl |
27
and consequently also changing (22) to
4 ff — 1 f—1\ T
2 — (T _
T <f n 1) [gl <f ¥ 1)“"2] 8

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

MARCH

as well as the simpler form (22a) to

g = E[l _ae hw]
g1 4g,

h? 1
i—<1 ———h2d2>.
g1 6

One should now find that corrections AE,, on E,, of
(25), such that ||[AE,||,=0.1]| E,o||1, would produce first-
order variations in

(31a)

<Efo, T*I'(K)~* coth T'(K) %TETO>
(32)

d
(Efo, T*F(K)_l tanh P(K) 7 TET()>

[using (26), (27), and (28)] that are not greater than
second-order variations. This confirms the stationary
character of (32) near E,,.

The condition for no inverse to (24) is found [see
Appendix (49) ] by forming the inner product expression

A(# cos kox, E,)
of (24) with arbitrary E, and with £ cos k¢x; wherein
A=0
g% sin kola — b)
Vke® + g% sin Vko? + g?b-sin kea

5
. f cos kox cos v/ ko? + g% wdx.
0

A can be rearranged to show a simpler statement,

0 = kotan ko(a — b) + Vko? + g2 tan Vko2 + g2b, (33)

of the condition for fields (25) in the periodic waveguide
when d is small. Thus, g is found from (33), E,, from
(25), and finally 4 from (31) or (31a).

V. RESULTS

Table I lists results for several periodic guide con-
figurations, more or less easily derivable from the case
just considered by the process just shown. The use of
relation (31) or (31a) for determining 4 from g in each
case is presumed. The relation (4), to give J, from
E,q, is also presumed. This can make use of the approxi-
mate operator

g4

4

f—1 1

4 P(K)z]’ 34)

where T'(K)~? makes use of an appropriate finite or
infinite range representation; e.g., as in (16) and (16a).

1d
Vi(K) = Y[<f+ 1)%— F=1)
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The symmetric solution, Case I, corresponds to the
problem just worked. Symmetric solutions, where pos-
sible, are obtained by first rotating the planar wave-
guide about x =0 or x =&, and then continuing the sym-
metric Case I solution to cover the combined region.
Thereafter, in Case I, any further number of such im-
ages can be added to that just shown. The imaging
process stops after the first one in Cases 1I and III.
Case IV allows no imaging process. Evidently, the sug-
gestion of actual symmetry is false when the number of
images is odd.

If the sample problem were worked for the case of a
guide with two symmetric iris metallic regions or two
symmetric iris holes, one should find each such iris con-
figuration to allow two solutions: one, a symmetric solu-
tion; two, what can be called an antisymmetric solution.
The antisymmetric solutions in Table I, therefore, cor-
respond only to even numbers of images of the guide
being considered.

As the number of images increases, the Case I anti-
symmetric solutions tend to disappear. On the other
hand, the symmetric solutions approach a limiting be-
havior which can be characterized by

a
— g2 kgt 7 ;
the ratio of conducting domain width to nonconducting
domain width giving relative permittivity for this limit-
ing artificial dielectric.
When an image is taken around x =g, as it may in
Cases I and II, and if symmetric and antisymmetric

VI ko?
Vst -+ B - ke?
E.y = fsin VEEF Rt x
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solutions are combined, then the resultant guide ex-
hibits directional coupler (or re-entrant wave) action.
That is, both fields do not propagate simultaneously, so
that (when one of them does) their sum shows a trans-
fer of some power from one set of iris holes through the
artificial dielectric to the other set of holes. Similar ac-
tion occurs when imaging is done around x=0, as in
Cases I and IlI, but power transfer is made from one
side to the other of just one set of iris holes.

The Case I1I is peculiar for two further reasons. On
the one hand, the propagation constant is complex.
This is due to the assumed infinite width of the guide,
requiring an implicit source (or sink) at x= . Com-
pare Case II; this does not happen to be the effect there
except when g=0. As one might expect when g is com-
plex, there are four symmetric and four antisymmetric
propagation constants for the guide of Case III. One
could, if one wished, combine these waves to produce
purely x directed propagation, or a form of purely z
directed propagation, although this is not a necessary
task, since all the power in these guides is accounted for.

On. the other hand, because of the right angle turn of
the wave in the Case 111 guides, one has a detail picture
of re-entrant (or directionally coupled) wave action due
to a source at x= . Case IV provides a view of the
source at infinity.

The guide can be looked upon as containing diamag-
netic material when H waves are present, and does not
give rise to slow waves. Without further comment, H-
wave results corresponding to Case I are listed below:

1) Antisymmetrically imaged:

= cot VA2 kol b + cot Vgt + 2+ kot (a—b) =0

(34)

Joo = sin /g2 + B + ko (@ — %).

E, = 4 cos VI F ket x
Jso = 9 sin Vgt + B2+ ket (0 — %)
about x=a
E. = § sin V2 + kot & }
o and
Joo = 9 cos Vgs? + B+ ko? (¢ — x)

} and tan+/gs® + k24 kot (a — ) +

cot /g2 + B2+ ko (a — b) +

2) Symmetrically imaged:

about x=0

VI ko .
3 0

Vit ko —
e tan /B F kb = 0 (35)
Vei TR R Y G5
In both (34) and (35),

1 d
Rt R VR ke
As d—-)O,——ggzm(dZ/IZ)

—gi?

|
cot—2~ Vht+ ketd. (36)
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VI. ApprrioNAL ErRrROR CHECKS

There is reason to state that the results (25), (31),
(31a), and (33) are relatively good ones—in the sense of
practical convenience—when the designer is also the
calculator. In order to illustrate this, consider a two-
term approximation to (15); i.e., the operator estimate

[1 f—11 4f—1 1
_f+1—3—_5f+1r(x)2]
B N S

RO

If one uses the uncorrected g2, formula (22), then

w80

(5 -20- (3]
()

which yields 1’}’2‘ ‘~’£2|71| 2 and v.? about 10 percent off
in magnitude of the corrected g% The cause of this dif-
ference might be laid to the incompletely diminished
power due to ;. The percent difference is even larger
when Ihd’ =, for the reason that higher m, index
terms in (15) come into effectiveness. In this case, more
accurate results obtain when the corrected g2 is used,
instead of ¥2, to show the field function. Indeed, for a

i+
f—l

0] o) -]+

fii(gﬁy
f—1\nx

corresponds, as an approximation, to the diagonal
terms of (16). In this process, similar to that used
for finding (25), the roots v;® and 7,? of the numerator
in (38) will produce the functions cos +/y*+ k% and
cos \/722+k02/x———1inear combinations of which are
required to represent E,,. The roots can be found from

G ===l ()]
AR C IR EHICN

v: and 7, have, at most, the same order of magnitude
(around kd=150°), but are never, even approximately,
equal. Say that ['yl! is less than |’Yz’. Then v, will
adjust the power content of E;q and #. the field rise at
the iris edge.

When ’hd‘ is small, E,p is powerful over much of the
iris hole. When ‘hd[ is large, there is power only near
the iris edge. Thus, when [ hdl is small, it is a measure of
comparison between the operators (37) and (19) that
the corrected g2=+,*; and when |hd} is large, that
the corrected g? =+,

Assuming | kd| =80°, one finds

)=l
% B 2 T
2 2
()
2 T
which yields |'yz[ 25201 fyl| 2and I’Y1 2 about 1.0 percent

off the magnitude of the corrected g2 Assuming
| hd| =150°, one finds

(39)

(38)

oo ()]

two m, term approximation at !hd[ =, one finds the
corrected g? about 10 percent above v¥2; the difference
tending to diminish as higher m, terms are included in
the estimate of the operator.

VII. Tue INTERDIGITAL PERIODIC LINE

For an additional sample problem, consider the inter-
digital line shown in Fig. 2. The same dielectric medium
is used here as in Fig. 1. One finds, corresponding to (3),
that

< 2 X H.o1 )

e, X H,y,

I )< coth I'(K)d  —eM csch F(K)d>< E.o1 >
’ —etd csch T(K)d  coth T(K)d e " E 40

E‘rUl
=V®( )
——— \€ E o0

The multimatrix form V.(K) of the iterative admit-
tances is convenient because of the distinctiveness of
each iris in the pair considered. Corresponding to (4),
one finds that

.]501
e J 02
coth I'(K)d

27o(K) —f esch I'(K)d E.
e (—f csch T(K)d  coth T(K)d ><e~th,m>

ETO].
—2r®) (),
— \e " E, g2

(40)

(41)
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Fig. 2. The interdigitally loaded planar waveguide. Its properties
differ from those in Fig. 1 only in the conductor boundary con-
figuration.

where 2V (K) is the multimatrix loading admittance,
and f is still given by (4a). Here, the statement equiva-
lent to (9) is

Tl* 0 Tl 0 ETOl
0= (o m) 7o )05
0 ’I‘Z* ——\ 0 Tz egthTng

T, and T: being respective realizations of projection on
successive irises.

If one uses the information, due to translational sym-
metry, that

Ei(x, ) = £ ¢ ™MEs(x — a, 2 + d),

(42)

(43)

then (42) can be rearranged to fit either (for either
mode) of the simpler statements

0 = T*Vo(K)[coth T(K)d Ff csch D(K)d|TE.o; (4%)

where the indication F in (44) matches 4 in (43), and
where T is as defined for the preceding sample problem.
The signs F in (44) also match the choice 2d or hd+jm
for phase shift. Thus, the formal consideration of the
interdigital line is like that of the periodic line: Table I
and other formulas and curves'? of the periodic line
apply to both lines. Indeed, so long as 2d is iris peri-
odicity, this last remark applies to both the thin- and
the thick-iris loaded guides.

The corrected g? (31) is needed to solve (44), but one
must distinguish between corrections needed for one or
the other case in (44). It is not simply (though it may
usually be) that the correction depends on whether id
deviates from 0 or from jmr, or not.

A noteworthy point derived from the double state-
ment (44) lies in the fact that there can be slow / waves
here; i.e., corresponding to a slow fundamental space
(Hartree) harmonic.
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VIII. CoNcLUDING REMARKS

The series representation (13) of the loading admit-
tance operator requires that more terms be used when
iris separation increases. When d is sufficiently large, one
could choose to replace (15) by a series such that fewer
terms are required for approximation. Thus the admit-
tance operator representation needs to be chosen to suit
conditions on the waveguide. It is not digressive, fur-
thermore, tosuggest that the approach made here can (for
the appropriate operators) be used in the treatment of
other loadings, such as the single iris and the thick
(single, periodic, or interdigitally placed) iris.

APPENDIX

Let # and v be vectors in the same finite or infinite
dimensional space. Then the calculations #v* and v*u
can each exist. One says conventionally® that

wt = u > <y, (45)
which is an operator called a dyad; and that
v*u = (v, u) = (v, u), (46)

a scalar product. The alternative scalar product nota-
tion is suggestive when forming dyad products like
2y > <oty > <vy= (2, Uq) 1> <. Given an operator of
the form

14 u> <, (47)
its inverse has the form
> <9 )
1— - =" (48)
1+ (v, »)

This property can be used to give a sequential display of
the inversion of operators like

1+ Zuz> <7)t.
11

The condition for no inverse (48) to (47) is seen to be
14 (v, ) = 0. (49)

In general, truncation of a large set of linear equa-
tions corresponds to termination of a series of dyads.
There can sometimes be a net advantage in the use of
dyads to depict favorable coordinate axes transforma-
tions.
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