
IEEE TRANSACTIONSON MICROWAVE THEORYAND TECHNIQUES VOL. MTT-14, NO. 3 MARCN, 1966

Some Results for ‘I’hin&is Loaded Periodic Waveguides

D. ROSENBERG, MEM13ER, IEEE, AND D. J. R. STOCK, ASSOCIATE MEMBER, 1EE12

Afrsfracf-The planar waveguide holding planar obstacles is a

prototype structure-its fields correspond to some sets of lowest

modes in circular and coaxial line waveguides that use coaxial iris

loading and in inductive iris loaded rectangular guides. An analysis

of a periodically thin-iris loaded planar waveguide is offered, the

procedure for which can also be applied to the other wavegnides

mentioned. A particular example for small iris separation is con-

sidered. Among the results of this study are adjustments to some

formulas of Brilltmin so as to allow consideration of large phase

shifts per cell of periodic guide. The procedure, which can be recom-

mended as a formula deriving technique, can find use with such other

planar obstacles as the thick periodic iris, the interdigitally placed

irises, or the single iris in a muftimode guide. Some consideration

is given to interdigital loading.

I. INTRODUCTION

T

HE SYIM M ETRI ES of waveguide obstacles are

useful when they can divide the set of normal

modes into sufficiently small, distinct subsets.

They are further useful when several types of guide fall

together as a class because of similar symmetry proper-

ties. The following guides, because of the planar ob-

stacles they hold, form such a class; namely, such irises

in the planar ~~aveguide, coaxial irises in the circular

waveguide or in the coaxial line waveguide, and induc-

tive window irises in rectangular waveguides. In all of

these cases, there is a distinctive subset of normal

modes which includes some modes of the lowest order.

By treating only obstacles in the planar waveguide,

one obtains a prototype of analysis for the remaining

cases mentioned. Hence the planar guide, with peri-

odically arrayed thin irises (as shown in Fig. 1), will be

considered here. Two points are worth noting before-

hand as important to the analysis. On the one hand, an

appropriate series representation of the field operator

will be employed. On the other hand, use will be lmade

of a simplified interpretation of elements of the series of

operators. It will be plain how the prl~cedure can be ex-

tended to cover the cases of other waveguides men-

tioned.

Among the results will be some relations for adj usting

the formulas of earlier studies 1,2,3 of this periodic guide
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Fig. 1. Properties of the periodic loading and of the planar wave-
guide when E waves and the TEM wave are present. For H
waves, let YO(k) = Z–T (k).

configuration for the sake of extending the range of pos-

sible phase shift per section. It is thought, because of the

attention given to accuracy, that the results will be use-

ful for representation of such multimode guides. The

emphasis of what follows is upon metlhocl (upon its

formal display, at least), and this is reflected in the pres-

ence of a somewhat large section of developmental dis-

cussion.

In order to maintain simplicity, only the combined E

and TENT waves are treated, although some similarly ob-

tained results for H waves will be presentecl. An appli-

cation of results to interdigital lines will also be shown.

II. THEORETICAL CHARACTERIZATION

OF THE PROBLEM

Transverse fields in each cell of the periodic guide can

be given by the collection of their component normal

modes. Thus, let

[E,(k) = ET,(k) cosh r(k)~

+ Z,(k) H,,(k) x 2 sinh

and

[H,(h) = E&(k) cosh r(k)~

+ 2 X VIE,, sinh

show a mode of the periodic guide as a

r(k)~] (1)

r(k)~] (2)

vector col-

The n ota-umn indexed by the- wave numbers k.

tions E,= [E,(k)], H,= [H,(k)], E,o = [E,o(k) ], and

H,O = [H,o(k) ] are a helpful convenience for handling

(1) and (2). If K = [k] is a diagonal matrix of the wave

numbers k, then one can make further convenience of

the notations ZO(K) = [Zo(k) ], ~o(K) = [.~o(k) ], Or
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I’(K) = [I’(k)]; or other scalar functions of K. Thus, (1)

has the alternate representation E,= cosh I’(K)zETO

+ZO(K) sinh l?(K) zlZ,iI X 2. Finally, where only passing

interest will be the case, the collection of wave numbers

k might form a continuously (as well as discretely)

infinite set, depending on the guide dimensions.

If (1) and (2) are to be a mode of the periodic guide,

they must fit the boundary conditions of continuity on

the iris holes, zero transverse electric field on iris metal,

and the amplitude variation ehd from cell to cell. The

corresponding constraining statements upon (1) and (2)

can be put as

,2 X H,o = Yi(K)E,o

= F,(K) (coth I’(K)u’ – ehd csch I’(K) d)E,O (3)

and as

J.o = 2 I’z(K)E.o

= 2 Y,(K) (coth r(K)d – j csch r(K)d)E,,. (4)

In (3), Y,(K) is a matrix of image admittances for the

normal modes, looking along z> O, from the point

z = O+. In (4), J.. is the field of total current density on

the iris plane at z = O, and 2 YZ(K) is a matrix of shunt

loadings for the normal modes at the iris planes. For

convenience,

f = cosh hd, (4a)

where h is the propagation constant per cell along z >0.

ETO is normal to the iris edge. It is well known that

such fields follow an inverse square root of distance law,

so that E,. is not made of a square integrable function

on the iris hole. So as to enjoy a path of least action,

when a norm for E,. is needed, the definition

will be used. This assumes E,o = 2-E(x).

Introduce now the projection operator P, which is

such that

PF, = F,

when F, is a field having the value zero on iris metal,

and is such that

PF, = o

when the value of F, is zero over the iris hole. Thus,

more generally, if FT is an arbitrary field on the uniform

guide cross section, PFT can be said to be F, projected

on the iris hole. P has the property Pt = P, where

t=l,2,3, . . . . Although P can be defined well enough

to work with, it has no inverse, for it is usually impos-

sible to reconstruct the iris metal component of F,,

given PF,. That component is in the null space of P.

P has the important properties of being real and sym-

metrical. Thus

ReP=P=P*=Re P*.

The projector complementary to P, which projects on

iris metal, can be found from P as

Q=l– P.

In the problem at hand, one makes use of P and Q in

the relations PE,o = E,o and QJ,o = J,o.

That a field satisfy both (3) and (4) is necessary for

solution of the periodic guide problem. These statement

derive from the boundary conditions. h’fore generally,

an arbitrary E,o inserted into (3) will always yield E,

and H, that fit Floquet’s theorem, although not usually

fitting boundary conditions. On the other hand, if E,o is

such that

O = P YL(K)PE,O, (5)

boundary conditions are automatically satisfied; and

Floquet’s theorem fits by use of (3), Thus, assuming

(3), (5) is sufficient, as well as necessary, for E,. to solve

the periodic iris-loaded waveguide problem.

A useful alternative to (5) can be seen in the state-

ment

0 = QZl(K)QJ,o, (6)

where ZL(K) = Yl(K)–l. Since YO(K) = Yr (K)–l, when

the E plus TElb’I combined waves are considered, one

sees that (5) makes use of a bounded operator, whereas

21(K) in (6) is unbounded. Were H waves being con-

sidered, it would be (6) that held the bounded operator,

and (5) the unbounded Y1(K).

111. FURTHER DEFINITIONS AND FORM UL.\TIONS

Because there will be much formal manipulation of

operators and vectors in the subsequent discussion, it is

worthwhile to show the means by which representations

are made with some care, the better to trace their prop-

erties. Therefore, consider the following definitions,

some of which have already been used.

First assume {t: non-negative integers }. Some useful

subsets of { t } are { to: odd positive integers} and

{f,: even non-negative integers },

From {t} construct { k = t~/a }, which is the set of

wave numbers for the given unobstructed planar wave-

guide, Also define the construction of {1= t~/b }, the

wave numbers of a smaller uniform planar waveguide.

Note the additional sets [m= t7r/d }, {m. = tor/d }, and

{~~=L~/d], their interpretation as waveguide wave

numbers being in this case superfluous since they will

be used as summation indices.

{k} has already been used to provide indices of the

coefficients used for the Fourier series representation of

a field. Thus, for example, E,= [E,(k)] must suggest

identity between the field given by its Fourier coeffi-

cients and given by the set of its functional values on

the larger waveguide cross section. A similar use can be

made of { J ] for fields on the smaller waveguide cross

section. In particular, if PET = E,, one has the relation

E,= [E,(k) ] = [E,(Z)].
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Let a = cd be called a scalar operator, where I is the

identity operator and a is a number. Thus, in a conven-

tional way, an expression is operator or scalar depend-

ing on the terms other than a that may occur.

The diagonal operator K has been introduced previ-

ously as a construction from { k }. The operator L from

{J} can be defined similarly. K and I. are not invertible

since zero is a diagonal elelment of each of them. How-

ever, if a #O, IK+a and L+a are invertible.

Kv can be identified with the operation – d2/dxz on

functions in the interval O ~ x ~ a, having zero deriva-

tives at x = O and x = a. Recall that E wave and TEM

wave normal modes fit these boundary conditions. K2 is

not invertible, but K2—k02= —d2/dx2-k02 is. Thus,

\\-orking either with function or with sequence represen-

tations, a one dimensional wave equa,tion can be solved

in the given interval with the given boundary condi-

tions. Lz is a second derivative operaltor like K2, but in

the interval O 5X < b.

It is possible, but will not be necessary here, to show

a matrix form for P. A suitable representation of 1? will

be derived as follows. Let { e(k) ] and { e(l) } be ortho-

normalized normal mode bases corresponding to guides

with cross sections on O < x 5 a and O5 x S b, rewec-

tively. Let PET= E, = [ET(k)] = [E,(1)], and define T as

that operator required to accomplish the transformation

[.%(k)] = TIEJ1)]. (7)

That is, T gives a basis change from { e(l)} to { e(k)}.

Thus, except for the null-space of P, which is to be over-

looked anyway, T can represent P. ILike P, T is a real

operator. Unlike P, T is not a symmetrical operator.

For, on the one hand,

T*T = I (8)

so that T* retransforms from the larger to the smaller

basis. On the other hand,

TT* # 1,

unless the domain of T* consists only of functions on

the iris hole; e.g., as in

(TT*)T = T(T*T)

= T.

This property of T is due to the fact that, while T does

not have a null-space, T* does have a null-space.

There is a net advantage if T is used to represent P

in (5). For then the symmetrical operator in

O = T* Yi(K)TEro (9)

has or has not a null-space depending only on the factor

Yz(K). Naturally, in (9), it is not necessary to insist

that T13.o (opposed to -ZO) solves the problem unless

the periodic guide is actually being fed by a guide with

cross-sectional width a.

If, like T, S is introduced as a basis change on the

iris metal, then the alternate equation (6) can be put

as the more definite statement,

O = S*Z1(K)SJ.O. (lo)

One might note that S+ T is an orthogonal transf or-

mation, from the large guide cross section to the large

guide cross section. Individually, S and T are not or-

thogonal. However, each might be characterized as

holding some of the columns of an orthogonal matrix.

The properties of T help to obtain an evaluation of

the operator product T* (K2 +az)–l T. It has been noted

that (Kz +a~)–l is an inverse wave operator in the

larger guide, fitting zero derivative boundary ccmdi-

tions at the guide walls. T provides the functions to be

operated upon (from the basis { e(l) ]), while T* projects

and transforms the result to something tractable.

In this process, what is required first is a solution to

c-$+a2)F=e(’)O<x:~b

~l,here e(l) = ~~e(l/b) cos 1x, and e(l) = 1 when 1= 10, or

e(l) = 2 when 1>0. With the giveri boundary condi-

tions, one has

d~ cos lb. sinh a(a — b)
—2——

b (12 + a’) sinh au
cosh ax (12)

for O<x<b, and

d~ cos lb. sinh ab
F= —

b (12 + C@ sinh aa
2 cosh a(a — x) (12a)

~Then 6 ~x~a. plainly, T*F is given by (12).

The collection of all such T*F gives a diagonal matrix

for the first terms of (12), and makes a dya.d4 from the

second terms of (12). Furthermore, since

cosh ax
x .—

a sinh ab

shows a Fourier sequence

the choice

T*(K’ + a’)-lT

[d 1
6(1)
— COSlb

b
(13)

p+a2 -

representation, then one has

= (L2 + ~’)-’ – a sinh ab
sinh a(a — b)

sinh au

in matrix form, or

i See Appendix.
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T“(K2 + az)-’T

= (L2 + ~z)-1

sinh a(a — b)
. i? Cosh C2x > < & Cosll ax (14a)

a sinh ab. sinh au

in functional form, or a mixture if one requires it.

By using (13), changing b to d and x to z, and then

evaluating at z = O and z = d, one can write from (4) :

I–jcoswtd
Y~(K) = ~ ~ e(m) (15)

I’(K)’ + m2 ‘

which holds for d >0. Making use of (14a), one can put

Y
T* Yi(K)T = ; ~~ ~(m)(l – f cosmd) ~ 1

11’(L)2 + m’

sinh r(m) (a – b)
—.

r(m) sinh I’(m)b. sinh I’(m)a

}
“2 cosh r(m)% > < f cosh r(m)x , (16)

also holding for d >0. Thus, there is at least one general

formula to give the product indicated by (9). There are

others, but (16) is suitable for small d, and this will suit

the sample problems to be shown.

If K2 in (15) and Lz in (16) are extended so as to

mean second differentiations in the half lines below

x = a and x = b, respectively, and if x yields to the sub-

stitution y = b —x, then (15) can be used to show

‘Lam
z

CASE I

3TTp
‘J’Y

CASE II

1

L’x

~li~iE

-’
z

CASE III

I I

iiiiy
+Y

CASE IV

T* Yt(K)T = ~ ~ c(m)(l – f cos md)
{

1

m r(L)2+m2

e–r(m) (a–b] sinh I’(m) (a – b)
— je–r(~)~ > < jie-r(~)u

r(m) }

for waves on a single-plane, iris-loaded guide. One must

note, however, that a subset {O, . . . , ml} of { m } cor-

responds to outward traveling waves along y. Conse-

quently, there is a second operator associated with

(16a), having the same form, except in the replacement

of outward traveling waves with inward traveling

waves. Results would be the same in both cases. How-

ever, m-ere it a — b which became large instead of b, one

should have pairs of solution fields (see Table 1, Case

III) combining to make such a guide appear as a receiv-

ing antenna, a transmitting antenna, or a power trans-

mission line.

The operator (15) relates electric field to current

density. The operator

K’ Y,(K) (17)

relates voltage field to charge density. One could let

kO~O in (17) and then find operators equivalent to (16)

and (16a), but speaking only for static fields. Two par-

ticular effects can be mentioned: one, the m = O term

becomes nullified; two, the TEM waves in (16) are

removed. Some further variations of the problem are

shown in Table I.

TABLE I

RESULTS FOR THE E AND TEM COMBINED WAVES

Symmetric solzdwns: any possible
number of images about x = O o~
x=a.

130=3COS%42TGX

.T*~=i Cos ko(x–a)

k~ tan k~(a–b)

+-tan-b=o

1%0 = ie–- #

~eo=~cosk,[y– (a–b)] ,

k, tan ko(a–b) – ~_=O

.%0 = fef%u

J,.= @kOU

g=h=o

Antisymmetric solutions: only
possible image pairs about x =0.

lGo=f?sin~~x

J,0=2 COSk,(z–a)

O=kO tan ko(a–b)

+-cot-b

Antisymmetric solutions: only
possible image pairs about x = a.

E,o=? COS4=X

J.o=f sin ko(x–a)

k~ cot ko(a–b)

+-tan-b=o

Eto = ie–’’JIJl 2–%2u

J,,=Z sin k,[y–(a–b)]

k~cot k&b)+~_=O
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IV. SOLUTION PROCEDURE

When d is small, (16) can become simplified; i.e.,when

k,d is small, say k,d <0. lr. The total phase shift per cell

is not necessarily so limited, for it willl be seen that the

dimensions a and b can be chosen from a large set of pos-

sible values. It was mentioned that results will be shown

which would extend the range of usefulness of some

known formulas and curves. Indeed, when multimode

guides are considered, one might think any contribution

to accuracy of results is helpful. Some tests on the fol-

lowing sample problem will show that, as I M/ varies

from O to T, error in ] MI rises to five percent off the

values required for solving (9).

Some inaccuracies in the next few lines will need to be

refined when the reasons for them are shown. Put (15)

in the form

2

[
171(K) = V,(K) tanh ~ I’(K)d

f+l

f–l

–f+l
coth ; r (K)d

1

so that as d41

g’d 1
Y,(K) ~ 1 – g’ -—

Y(f – 1) ~(K)2 ;

wherein the replacements

2
— tanh~ I’(K)d + 1
I’(K)d

and

2 4: 1
—– coth : I’(K)d A ——
r(K)d r (K) W + Y

have been made, and where

g’=%+) [’-%+)l’

‘1 k,d

[

~ kld ‘1
— 1—Fsinhzy I+x sinhay .

.

(18)

(19)

(20)

(21)

(22)

The notation lzl is meant to suggest that Izl can

stand correction. Note that in (22) the constraint

– 12 <gzdz <6 for all real or imaginary h; and note also

the poles of gz located at

—

+ k, = d-l sinh-l ~ +j&17r(2t + 1),

where tcan be any positive or negative integer. One can

see that the waveguide problem would be characterized

more accurately by (19) the further out the poles are

placed, implying that accuracy is favored when \ lzld I

is small. If ] Izldl <0.307r, then

can be used to replace (22).

Now, taking (19) to bean estimate of (15), let (16) be

estimated by

g’d
T* Y,(K)T

I’(f – 1)

1
=l–g’—

r (L) 2

g’ sin ko(a – b)

ko sin kob. sin koa
i? COSkll:t > < i COSkox (23)

when d~O. Upon operating on the left sides of the clper-

ators in (23) with I’(L) ~(I’(L)2 —g2)–1, one obtains

l–
gz sin ko(a – b)

{ko’ + g’ sin ~ko’ + gz b. sin koa

Since .ETO k the null-space of (24), one has immediately

that

E,. = & COS /ko’ + g’ X. (25)

E,. is finite at the iris edge in (25), but this can still be

a fair representation of electric field in the iris hole since

the infinite rise of E,. should start nearer the edge and

pass a smaller fraction of power, as d-+0. If the set of

irises is taken as an artificial dielectric insert, then (25)

shows a field whose magnitude drops off in an expected

manner, away from the interface of free space with a

dielectric insert, when ko’+gz <O.

One can calculate as a check on E,o, corresponding to

each term in (16), the value of the quadratic form

(E,o, T*(I’(K)’ + nz2)-lTE,0)

../ Igl’-ko’ _
— — ; (26)——.

(??2’ – ko’) (Vm’ – ko’ + d I g 1“ – k,’)

and it is now implicit that koz+gz <0. If a. sum5 is n-lade

over (m.> O], one finds that

(E,o, T*(I’(K)’ + f?z’)-’’T&o

2X
m8>0 (13,0, T* I’(K) -’TETO)

()[gd 2
0629 –odg]’-~o’cl~2 —..

27r 2$r

1
+

d

1

. (27)
I+<lgl’–k:j;

5 L. B. W. Jolley, .%nwsatiow of Series, 2nd rev. ed. New “1’orlc
Dover, 1961, pp. 62–65, 240-242.
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Thus, when kd < I gdl = 0.27r, (27) shows a three-per-

cent error in the estimate (23) of (16) due to operators

with index me> O. At the same time, if (26) is summed5

over { mo }, one should have

(E,,, T*(I’(K)’ + m2)-’TEr,)
8X

~o (E,o, T* I’(K) -’TE,,)

()[gd 2 d
~8— 0.221 – o.043d I g 12– L%’ —

T T

1
+

1 . (28)
l+tilgl’-ko’~

T 1

By contrast with (27), (28) shows a 14-percent error in

the estimate of (16) by (23) due to terms indexed vzo,

for the condition I gd I = 0.2~. If the region of iris metal

were smaller, then the d yads in (16) and (23) would have

smaller amplitudes, yielding ~ I g I 2— koz more nearly

zero; so that (26) should have more nearly the form

(m’ – k02)-’, yielding in turn more nearly zero errors in

the tests (27) and (28). Therefore, it is chiefly the size

of iris metal that may cause error in using (23) to repre-

sent the waveguide problem when d is small.

Nevertheless, it appears the estimates (19), (23), and

(25) are really quite useful. For what is needed, in view

of (27) and (28), is only to change the replacements

(20) to

2 1
—— tanh ~ r(K)d ~ gl
I’(K)d

8
.

-[
0.221 – 0.043~1 g 1’ – ko’

T’

d 1
.— +

T 1 , (29)
l+~lgl’–k,’~

n- 1
and (21) to

2 4
— coth +- r(K)d = + g,,
r(K)d 17(K)2d2

(30)

where

2

[

d
gz = ~ 0.629 —0.185<lgl’—k02—

277

1
+

d
1

1

; (30a)

l+~lgl’–kozz

and consequently also changing (22) to

g“%+)[g’-w”r ’31)

as well as the simpler form (22a) to

[
g’+< l_gl–g2 h2d2

gl 4gl 1
++2) (31a)

One should now find that corrections AE,o on E,o of

(25), such that l)AE,,\l, = O. 1~1E,,]],, would produce first-

order variations in

(E,o, T* I’(K)-’ coth I’(K) $ TE,O
)

(

d

)

(32)

E,o, T*r (K)-’ tanh I’(K) ~ T&o

[using (26), (27), and (28) ] that are not greater than

second-order variations. This confirms the stationary

character of (32) near E,o.

The condition for no inverse to (24) is found [see

Appendix (49) ] by forming the inner product expression

.4 (f COS kox, ET)

of (24) with arbitrary E, and with ? cos kox; wherein

A=O

=1–
g’ sin ko(a – b)

~ko’ + g2 sin ~ko’ + g’ b. sin koa

“s

b

COS kox COS#k,z + g2 xdx.
n

A can be rearranged to show a simpler statement,

O = ko tan ko(a – b) + ~ko’ + g2 tan ~ko’ + g2 b, (33)

of the condition for fields (25) in the periodic waveguide

when d is small, Thus, g is found from (33), E,. from

(25), and finally h from (31) or (31a).

V. RESULTS

Table I lists results for several periodic guide con-

figurations, more or less easily derivable from the case

just considered by the process just shown. The use of

relation (31) or (3 la) for determining h from g in each

case is presumed. The relation (4), to give J.o from

E,o, is also presumed. This can make use of the approxi-

mate operator

f–1 1
—— _

1d I’(K)’ ‘
(34)

where r (K)–2 makes use of an appropriate finite or

infinite range representation; e.g., as in (16) and (16a).
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The symmetric solution, Case I, corresponds to the

problem just worked. Symmetric solutions, where pos-

sible, are obtained by first rotating the planar wave-

guide about x = O or x =a, and then continuing the sym-

metric Case I solution to cover the combined region.

Thereafter, in Case 1, any further nulmber of such im-

ages can be added to that just shown. The imaging

process stops after the first one in Cases II and III.

Case IV allows no imaging process. Evidently, the sug-

gestion of actual symmetry is false when the number of

images is odd.

If the sample problem were worked for the case of a

guide with two symmetric iris metallic regions or two

symmetric iris holes, one should find each such iris con-

figuration to allow two solutions: one, a symmetric solu-

tion; two, what can be called an antisymrnetric solution.

The antisymmetric solutions in Table 1, therefore, cor-

respond only to even numbers of kElgW of the guide

being considered.

As the number of images increases, the Case I anti-

symmetric SOIU tions tend to disappear. On the other

hand, the symmetric solutions approach a limiting be-

havior which can be characterized by

–g2+ko2$ ;

the ratio of conducting domain width to nonconducting

domain width giving relative permittivity for this Iimit-

ing artificial dielectric.

Mlhen an image is taken around x =a, as it may in

Cases I and II, and if symmetric and antisymmetric
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solutions are combined, then the resultant guide ex-

hibits directional coupler (or re-entrant wave) action,

That is, both fields do not propagate simultaneously,, so

that (when one of them does) their sum s’hews a trans-

fer of some power from one set of iris holes through the

artificial dielectric to the other set of holes. SimiIar ac-

tion occurs when imaging is done around x = O, as in

Cases I and II 1, but power transfer is made from one

side to the other of just one set of iris holes.

The Case III is peculiar for two further reasons. On

the one hand, the propagation constant is complex.

This is due to the assumed infinite width of the guide,

requiring an implicit source (or sink) at x=: ~. Com-

pare Case II; this does not happen to be the effect there

except when g = O. As one might expect when g is com-

plex, there are four symmetric and four antisymmetric

propagation constants for the guide of Case III. One

could, if one wished, combine these waves to produce

purely .x directed propagation, or a form of pure] y z

directed propagation, although this is not a necessary

task, since all the power in these guides is accounted for.

On the other hand, because of the right angle turn of

the wave in the Case III guides, one has a detail picture

of re-entrant (or directionally coupled) wave action due

to a source at x = co. Case IV provides a view of the

source at infinity.

The guide can be looked upon as containing diamag-

netic material when H waves are present, and does not

give rise to slow waves. Without further comment,, H-

wave results corresponding to Case I are listed below:

1) Antisymmetrically imaged:

~lz’ + k,’ —.
.cottik2+ k02b+cottigs2+ lz2+ko2(a-b)=0

~gs’ + h’+ kc,’ I
(34)

2) Symmetrically imaged:

about x = O

_——
E,. = ~ COS ~hz + koz X

)

v%’ + koz ——

J,o = ~ sin ti~s’ + h’+ ko’ (a – z)
and tan <gs~ + h’ + ko’ (a – b) +

V’g82 + h’+ k02
cot ~hz + koz b = O

about x=a

E,o = 5 sin 4X2 + ko’ x

}

~hz + koz —_

J.o = j cos Vg32 + h’+ ko’ (a – x)
and cot <g32 + h2 + ko’ (a – b) +

V’g,’ + h’+ ko’
tan ~hz + ko2 b = O (35)

In both (34) and (35),

1 d 1 —_—
–g3–2 =

hz + ko2 – 2~h2 + ko’
cot ~ V“lz2 + /%02 d. (36)

As daO, –g#w(d2/12).
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VI. ADDITIONAL ERROR CHECKS

There is reason to state that the results (25), (31),

(3 la), and (33) are relatively good ones—in the sense of

practical convenience—when the designer is also the

calculator. In order to illustrate this, consider a two-

term approximation to (15); i.e., the operator estimate

[

~_f–11 4 “f-1 1
— ——— — —

f+13 d’ f + 1 I’(K)’ 1

If one uses the uncorrected gz, formula (22), then

(9’+[’-H]

2

od

_f+l
?d?~ —

T f–1’

which yields \ 72 I z A 2 I yl 12 and 712 about 10 percent off

in magnitude of the corrected gz. The cause of this dif-

ference might be laid to the incompletely diminished

power due to -yl. The percent difference is even larger

when I kd I = ~, for the reason that higher m, index

terms in (15) come into effectiveness. In this case, more

accurate results obtain when the corrected g2 is used,

instead of ~z, to show the field function. Indeed, for a

_(_) ‘(L)[’-2(:)2CHI+ ‘(L’’[(32-g’l-”(3~~+lgd’

f–l. –

‘(L’’[r(L)’+ (31

(38)

corresponds, as an approximation, to the diagonal

terms of (16). In this process, similar to that used

for finding (25), the roots ~12 and -yZz of the numerator

in (38) will produce the functions cos ~-y12 + kozx and

cos dyz~ + koix—linear combinations of which are

required to represent E,O. The roots can be found from

(;)2=-+1-(:)21

‘M=t7Ty(+)(?r” ‘3’)
‘Y1 and 72 have, at most, the same order of magnitude
(around h?= 150°), but are never, even approximately,

equal. Say that I ~1 I is less than 1721. Then ~1 will

adjust the power content of E,O and yz the field rise at

the iris edge.

When I hdl is small, E,o is powerful over much of the

iris hole. When I hi\ is large, there is power only near

the iris edge. Thus, when I hdl is small, it is a measure of

comparison between the operators (37) and (19) that

the corrected gz ~ ~lz; and when I kd I is large, that

the corrected gz A 722.

Assuming ] MI ~ 80°, one finds

which yields 1721 z ~ 20 \ ~112 and I ~1 I z about 1.0 percent

off the magnitude of the corrected g2. Assuming

lhdl ~150°, one finds

two m, term approximation at I hd [ = m, one finds the

corrected gz about 10 percent above 72; the difference

tending to diminish as higher m. terms are included in

the estimate of the operator.

VII. THE INTERDIGITAL PERIODIC LINE

For an additional sample problem, consider the inter-

digital line shown in Fig. 2. The same dielectric medium

is used here as in Fig. 1. One finds, corresponding to (3),

that

= Y,(K)
(

coth I’(K)d

– ehd csch 17(K)d ‘::r:(:?d)(e::o)

E,ol
= Y,(K)

()
(40)

e–hdEToz “

The multimatrix form Y.(K) of the iterative admit-

tances is convenient because-of the distinctiveness of

each iris in the pair considered. Corresponding to (4),

one finds that

J,,,

() e–h~J,oz

– 2 I’,(K)
(

coth I’(K)d
—

–f csch I’(K)d ‘~Z~~$’)(e~~02)

E,ol
= 2Y1(K)

()e–hdE,oz ‘
(41)
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Fig. 2. The interdigitally loaded planar waveguide. Its properties
differ from those in Fig. 1 only in the conductor boundary con-
figuration.

where 2YL(K) is the multirnatrix loading admittance,

and~is still given by (4a). Here, the statement equiva-

lent to (9) is

T1 and Tz being respective realizations of projection on

successive irises.

If one uses the information, due to translational sym-

metry, that

El(x, z) = ~ e–fi~Ez(* – a, 3 + d), (43)

then (42) can be rearranged to fit either (for either

mode) of the simpler statements

O = T* I’O(K) [coth I’(K)d Tf csch I’(K) d] TE,u; (44)

where the indication T in (44) matches y in (43), and

\vhere T is as defined for the preceding sample problem.

The signs T in (44) also match the choice Id or Id +j~

for phase shift. Thus, the formal consideration of the

interdigital line is like that of the periodic line: Table I

and other formulas and curvesl’2 of the periodic line

apply to both lines. Indeed, so long as 2d is iris peri-

odicity, this last remark applies to both the thin- and

the thick-iris loaded guides.

The corrected g2 (31) is needed to solve (44), but one

must distinguish between corrections needed for one or

the other case in (44). It is not simply (though it may

usually be) that the correction depends on whether kd

deviates from O or from jr, or not.

A noteworthy point derived from the double state-

ment (44) lies in the fact that there can be S1OIV H waves

here; i.e., corresponding to a slow fundamental space

(Hartree) harmonic.
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VII I. CONCI.UDING REMARKS

The series representation (15) of the loading adrz it-

tance operator requires that more terms be used when

iris separation increases, lt’hen d is sufficiently large, clne

could choose to replace (15) by a series such that fewer

terms are required for approximation. Thu~s the admit-

tance operator representation needs to be chosen to suit

conditions on the waveguide. It is not digressive, fur-

thermore, to suggest that the approach made here can (for

the appropriate operators) be used in the treatment of

other loadings, such as the single iris and the thick

(single, periodic, or interdigitally placed) iris.

APPENDiX

Let u and u be vectors in the same finite or infinite

dimensional space. Then the calculations UV* and z~*z~

can each exist. One says conventionally that

%LV*==2L> <V, (45)

which is an operator called a dyad; and that

V*2L = (v, u) = (v, u), (46)

a scalar product. The alternative scalar product nc~ta-

tion is suggestive when forming dyad products 1ilce

ZL1>< vluz > < vz = (VI, ZIZ) U1 >< VZ. Given an operator of

the form

1+ ’u> <z, (47)

its inverse has the form

‘sL><v
l– (+8)

1 + (v, ZL)

This property can be used to give a sequential displa~,’ of

the inversion of operators like

l+~u,> <v,.

The condition for no inverse (48) to (47) is seen tcl be

1 + (v, It) = 0. (49)

In general, truncation of a large set of linear eq ua-

tions corresponds to termination of a series of dyads.

There can sometimes be a. net advantage in the use of

d yads to depict favorable coordinate axe:s transfer ma-

tions.
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